- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Balestriero, Randall (1)
-
Baraniuk, Richard (1)
-
Humayun, Ahmed_Imtiaz (1)
-
Ronen, Omer (1)
-
Yu, Bin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop Latent Exploration Score (LES) to mitigate over-exploration in Latent Space Op- timization (LSO), a popular method for solv- ing black-box discrete optimization problems. LSO utilizes continuous optimization within the latent space of a Variational Autoencoder (VAE) and is known to be susceptible to over- exploration, which manifests in unrealistic solu- tions that reduce its practicality. LES leverages the trained decoder’s approximation of the data distribution, and can be employed with any VAE decoder–including pretrained ones–without addi- tional training, architectural changes or access to the training data. Our evaluation across five LSO benchmark tasks and twenty-two VAE mod- els demonstrates that LES always enhances the quality of the solutions while maintaining high objective values, leading to improvements over ex- isting solutions in most cases. We believe that new avenues to LSO will be opened by LES’ ability to identify out of distribution areas, differentiability, and computational tractability.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
